
|
-
Απλή αρμονική ταλάντωση
1.27 Κάθε ελατήριο στο σχήμα 1.44 έχει το ένα άκρο του στερεωμένο σε ακίνητο σημείο και το άλλο του άκρο προσδεμένο στο σώμα Σ. Οι σταθερές των δύο ελατηρίων είναι Κ1=120Ν/m και Κ2=80N/m. To σώμα Σ, έχει μάζα m=2kg και μπορεί να κινείται χωρίς τριβές. Να αποδείξετε ότι η κίνηση που θα εκτελέσει το σώμα Σ, αν εκτραπεί από τη θέση ισορροπίας του κατά τη διεύθυνση του άξονα των ελατηρίων είναι απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδο της ταλάντωσης.
[Απ: Τ=0,2π s]
-
1.28 Σώμα μάζας m=2 kg κάνει απλή αρμονική ταλάντωση. Το πλάτος της ταλάντωσης είναι Α=0,5 m. Όταν το σώμα απέχει από τη θέση ισορροπίας του x1=0,3m η ταχύτητά του είναι υ1=4m/s
α) Υπολογίστε τη σταθερά D της ταλάντωσης.
β) Υπολογίστε το μέτρο της ταχύτητας του σώματος όταν η απομάκρυνσή του από τη θέση ισορροπίας είναι x2= 0,4 m.
[Απ: α) D=200N/m β) υ=3m/s]
-
1.29 Στην ελεύθερη άκρη κατακόρυφου ελατηρίου κρέμεται σώμα άγνωστης μάζας. Η επιμήκυνση του ελατηρίου, όταν το σώμα ισορροπεί είναι Δl=2,5cm Να υπολογίσετε την περίοδο της κατακόρυφης ταλάντωσης που θα κάνει το σώμα, αν το απομακρύνουμε κατακόρυφα από τη θέση ισορροπίας του και το αφήσουμε ελεύθερο. Δίνεται g=10m/s2
- [Απ: 0,314s]
-
Ηλεκτρικές ταλαντώσεις
1.30 Κύκλωμα ηλεκτρικών ταλαντώσεων αποτελείται από πυκνωτή χωρητικότητας C=5 μF και πηνίο με συντελεστή αυτεπαγωγής L=4x10-3 Η. Να υπολογίσετε τη συχνότητα με την οποία ταλαντώνεται το κύκλωμα, αν διεγερθεί.
[Απ: 1126 Hz]
1.31 Κύκλωμα ηλεκτρικών ταλαντώσεων με πυκνωτή χωρητικότητας C=20xl0-6 F και πηνίο αυτεπαγωγής L=5xl0-2 Η διεγείρεται σε ταλάντωση. Για τη διέγερση του κυκλώματος, τη χρονική στιγμή μηδέν ο πυκνωτής έρχεται στιγμιαία σε επαφή με του πόλους πηγής τάσης V=50 V. Να γράψετε τις σχέσεις του φορτίου στον πυκνωτή και της έντασης του ρεύματος στο κύκλωμα, σε συνάρτηση με το χρόνο.
[Απ: q=10-3συν100t i=-Iημ100t (SI)]
|
|