|
6-6 Η ΣΧΕΤΙΚΟΤΗΤΑ ΤΟΥ ΜΗΚΟΥΣ
Όπως το χρονικό διάστημα που μεσολαβεί ανάμεσα σε δυο γεγονότα εξαρτάται από το σύστημα αναφοράς από το οποίο το μετράμε, και η απόσταση ανάμεσα σε δυο σημεία εξαρτάται από το σύστημα αναφοράς του παρατηρητή Ας κάνουμε πάλι ένα νοητό πείραμα, χρησιμοποιώντας το τρένο της προηγούμενης παραγράφου (σχ. 6.5).
Ένας χάρακας έχει τοποθετηθεί μέσα στο τρένο στη διεύθυνση κίνησης. Στο ένα άκρο του χάρακα στερεώνουμε μια πηγή φωτεινών αναλαμπών ενώ στο άλλο άκρο έναν καθρέφτη. Για τον παρατηρητή που ταξιδεύει μέσα στο τρένο ο χρόνος που χρειάζεται μια φωτεινή αναλαμπή για να επιστρέψει στην πηγή ανακλώμενη στον καθρέφτη θα είναι Δt0 = Όπου l0 το μήκος του χάρακα όπως το αντιλαμβάνεται ο παρατηρητής του τρένου. Για τον παρατηρητή στο σταθμό, το φως ξεκινώντας από την πηγή, για να φτάσει στον καθρέφτη διανύει απόσταση d = l + uΔt1 Το φως διαδίδεται με την ίδια ταχύτητα και στις δύο περιπτώσεις. Επομένως μπορούμε να γράψουμε d = cΔt1 και d' = cΔt2 |
Σχ. 6.6 (α) Ένας φωτεινός παλμός εκπέμπεται από μια πηγή που βρίσκεται στο άκρο ενός χάρακα, ανακλάται από ένα καθρέφτη που βρίσκεται στο άλλο άκρο και επιστρέφει στην πηγή. (β) Η κίνηση του φωτεινού παλμού όπως τον βλέπει ένας παρατηρητής στο Σ' . Όπως φαίνεται στο σχήμα, η απόσταση που ταξιδεύει ο παλμός για να φτάσει στον καθρέφτη είναι μεγαλύτερη κατά την ποσότητα uΔt1 από το μήκος (l) του χάρακα όπως το αντιλαμβάνεται αυτός.
|
![]()
Σχ. 6.7 (α) Κύβος ακίνητος ως προς τον παρατηρητή, (β) Ο ίδιος κύβος κινούμενος με ταχύτητα u=0,8 ως προς τον παρατηρητή
|
από τις οποίες παίρνουμε
Ο συνολικός χρόνος στον οποίο το φως διατρέχει την απόσταση πηγή - καθρέφτης - πηγή θα είναι: Δt = Δt1 +Δt2 = και τελικά Δt = Από τις (6.3), (6.4) και (6.5) βρίσκουμε
Βλέπουμε ότι το μήκος (l) που μετράει ο παρατηρητής που είναι ακίνητος στο σταθμό είναι μικρότερο από το μήκος (l0) που μετράει ο παρατηρητής που βρίσκεται στο τρένο. Το φαινόμενο αυτό το ονομάζουμε "συστολή μήκους". Το μήκος ενός αντικειμένου όπως μετριέται στο σύστημα αναφοράς ως προς το οποίο ηρεμεί (το l0 στο πείραμά μας), ονομάζεται ιδιομήκος του αντικειμένου ή μήκος ηρεμίας. Αποδείξαμε ότι μήκη σε διεύθυνση παράλληλη στη διεύθυνση της σχετικής κίνησης δυο αδρανειακών συστημάτων αναφοράς συστέλλονται. Αποδεικνύεται ακόμη ότι μήκη κάθετα στη διεύθυνση της κίνησης δε συστέλλονται (σχ. 6.7). Εδώ αξίζει να σημειώσουμε ότι στην πραγματικότητα δε συστέλλεται το ίδιο το αντικείμενο, αλλά η μέτρησή του από ένα άλλο σύστημα αναφοράς. Είναι ο χώρος που παραμορφώνεται και όχι το αντικείμενο, όπως επίσης είναι ο χρόνος που παραμορφώνεται όταν βρίσκουμε ότι κάποια ρολόγια πηγαίνουν πιο αργά και όχι τα ίδια τα ρολόγια. Οι υπολογισμοί μας δε μέτρησαν παραμορφώσεις αντικειμένων ή γεγονότων αλλά διαφορετικές συνθήκες που επικρατούν στις διάφορες περιοχές του χωροχρόνου. |
|
ΠΑΡΑΔΕΙΓΜΑ 6-2
Ας υποθέσουμε πάλι ένα τρένο που ταξιδεύει με ταχύτητα u = 108km/h (30m/s). Ένας επιβάτης του μετράει, με μια μετροταινία, το μήκος του βαγονιού στο οποίο βρίσκεται και το βρίσκει 25 m. Πόσο θα είναι το μήκος του βαγονιού για παρατηρητή ακίνητο στο σταθμό; Απάντηση Σύμφωνα με την εξίσωση (6.6)
O ακίνητος παρατηρητής βρίσκει στην ουσία l = l0, απολύτως δικαιολογημένη όσο οι ταχύτητες με τις οποίες τα συστήματα αναφοράς μας είναι πολύ μικρότερες της ταχύτητας του φωτός. Ας υποθέσουμε ότι αντί για το τρένο του προβλήματος έχουμε ένα διαστημόπλοιο που ταξιδεύει με ταχύτητα u = 0,5 c και ο επιβάτης του πάλι μετράει το μήκος του και το βρίσκει 25 m. Πόσο θα το έβρισκε ο ακίνητος παρατηρητής της Γης; l1 = l0 αν το διαστημόπλοιο ταξίδευε με ταχύτητα u = 0,9 C θα ήταν l2 = l0·0,436 = 10,9 m ενώ αν ταξίδευε με ταχύτητα u = 0,99 c το μήκος του θα ήταν μόλις l3 = l0·0,141 = 3,525 m |