![]()
Εικ 3.2 Ρίχνοντας χρώματα μέσα σε ένα ρευστό που κάνει τυρβώδη ροή έχουμε μια εικόνα των δινών που σχηματίζει.
![]()
Σχ. 3.5 Ρευματική γραμμή είναι η τροχιά ενός μορίου του υγρού.
![]()
Σχ. 3.6 Σε κάθε σημείο στο περίγραμμα της επιφάνειας Α αντιστοιχεί μια ρευματική γραμμή. Όλες αυτές οι ρευματικές γραμμές ορίζουν μία φλέβα
|
3-3 ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
Κατά την κίνηση των ρευστών αναπτύσσονται δυνάμεις τριβής μεταξύ των μορίων τους (εσωτερική τριβή) αλλά και μεταξύ των μορίων τους και των τοιχωμάτων του σωλήνα μέσα στον οποίο πραγματοποιείται η κίνηση (δυνάμεις συναφείας). Αν οι δυνάμεις που προαναφέραμε υπερβούν κάποιο όριο το ρευστό δημιουργεί κατά τη ροή του δίνες και η ροή λέγεται τυρβώδης ή στροβιλώδης. Η μελέτη μιας τέτοιας κίνησης είναι πολύπλοκη. Εμείς θα περιοριστούμε στη μελέτη της ροής ενός ρευστού που δεν παρουσιάζει εσωτερικές τριβές και τριβές με τα τοιχώματά του σωλήνα μέσα στον οποίο ρέει και επιπλέον είναι ασυμπίεστο. Ένα τέτοιο ρευστό χαρακτηρίζεται ως ιδανικό. Στην πραγματικότητα η συμπεριφορά των κινούμενων ρευστών διαφέρει πολύ ή λίγο από τη συμπεριφορά των ιδανικών ρευστών. Για να διακρίνουμε τα υπαρκτά ρευστά από τα ιδανικά θα τα ονομάζουμε πραγματικά ρευστά. Η ροή ενός ιδανικού ρευστού είναι στρωτή, δηλαδή δεν παρουσιάζει στροβίλους.
Το σύνολο των θέσεων από τις οποίες περνά κάθε μόριο του ρευστού στη διάρκεια της κίνησής του ορίζει μια γραμμή που την ονομάζουμε ρευματική γραμμή. Εφόσον η ρευματική γραμμή είναι στην πραγματικότητα η τροχιά του μορίου, η ταχύτητά του σε κάθε θέση θα είναι εφαπτομένη της ρευματικής γραμμής πράγμα που σημαίνει ότι δύο ρευματικές γραμμές δεν είναι δυνατόν να τέμνονται (σχ. 3.5). Αν θεωρήσουμε μια επιφάνεια Α κάθετη στη διεύθυνση του σωλήνα1, μέσα στον οποίο κινείται ένα ρευστό και από κάθε σημείο του περιγράμματος της Α σχεδιάσουμε την αντίστοιχη ρευματική γραμμή μέσα στο ρευστό σχηματίζεται ένας νοητός σωλήνας που ονομάζεται φλέβα (σχ. 3.6). |
Από μια διατομή του σωλήνα ή της φλέβας σε χρόνο Δt περνάει ένας όγκος υγρού ΔV . Το πηλίκο
ονομάζεται παροχή του σωλήνα ή της φλέβας και μετριέται σε m3/s. Αν η διατομή του σωλήνα είναι Α και το υγρό στο χρονικό διάστημα Δt έχει μετατοπιστεί κατά Δx, μπορούμε να γράψουμε ΔV=AΔx (3.5) Αντικαθιστώντας την (3.5) στην (3.4) προκύπτει και επειδή το πηλίκο Π=Αυ
|
![]()
Σχ. 3.7 Στο χρονικό διάστημα Δt, από μια διατομή Α του σωλήνα περνάει υγρό όγκου Α Δx
|