9. Μετρικές Σχέσεις
Το κεφάλαιο αυτό ασχολείται ουσιαστικά με τον προσδιορισμό των στοιχείων του τριγώνου αν είναι γνωστές οι πλευρές, καθώς και με μετρικές σχέσεις στον κύκλο. Στις μετρικές σχέσεις στο τρίγωνο παρουσιάζεται το Πυθαγόρειο θεώρημα και η γενίκευση του με άμεση εφαρμογή στον προσδιορισμό του είδους του τριγώνου ως προς τις γωνίες του - ακόμα και στον προσδιορισμό των γωνιών του, αν χρησιμοποιήσουμε τον ισοδύναμο νόμο των συνημιτόνων - καθώς και των υψών του τριγώνου. Κατόπιν υπολογίζονται οι διάμεσοι με τα δύο θεωρήματα των διαμέσων.
Το κεφάλαιο ολοκληρώνεται με το θεώρημα τεμνουσών από το οποίο προκύπτουν οι μετρικές σχέσεις σε κύκλο.
Βασικοί Όροι: μετρικές σχέσεις, ορθές προβολές, πυθαγόρειο θεώρημα, γεωμετρικές κατασκευές, διάμεσος, γεωμετρικοί τόποι, τέμνουσες κύκλου
10. Εμβαδά
Είναι αποδεκτό ότι η έννοια του εμβαδού ενός ευθύγραμμου σχήματος προέκυψε από την ανάγκη αντιμετώπισης προβλημάτων της καθημερινής ζωής, αρκετά χρόνια πριν. Πράγματι είναι ιστορικά επιβεβαιωμένο ότι η Γεωμετρία εμφανίστηκε, τουλάχιστον τρεις χιλιετίες π.Χ., ως τέχνη υπολογισμού μηκών, εμβαδών και όγκων στους λαούς που κατοικούσαν κοντά στους ποταμούς Νείλο, Τίγρη και Ευφράτη. Στην Αίγυπτο μάλιστα ήταν τέχνη για μέτρηση γης. Αργότερα η έννοια του εμβαδού θεμελιώθηκε αυστηρά και γενικεύθηκε σε σύνολα πιο πολύπλοκα από τα ευθύγραμμα σχήματα. Στο κεφάλαιο αυτό ασχολούμαστε με την έννοια του εμβαδού ενός ευθύγραμμου σχήματος. Αρχικά εισάγουμε την έννοια του εμβαδού ενός πολυγωνικού χωρίου ή μιας πολυγωνικής επιφάνειας. Κατόπιν, δίνουμε τύπους υπολογισμού του εμβαδού του τετραγώνου, του ορθογωνίου, του παραλληλογράμμου, του τριγώνου και του τραπεζίου. Στη συνέχεια, δίνουμε τη σχέση των εμβαδών δύο όμοιων ευθύγραμμων σχημάτων και τέλος αντιμετωπίζουμε το πρόβλημα του τετραγωνισμού ενός πολυγώνου.
Βασικοί Όροι: εμβαδά, πολυγωνικά χωρία, ισοδύναμα ευθύγραμμα σχήματα, εμβαδόν τριγώνου, μετασχηματισμός πολυγώνου
11. Μέτρηση Κύκλου
Η μέτρηση του μήκους του κύκλου και του εμβαδού του κυκλικού δίσκου αποτέλεσε ένα σημαντικό θέμα με το οποίο ασχολήθηκαν σπουδαίοι μαθηματικοί της αρχαιότητας (Ιπποκράτης ο Χίος, Αρχιμήδης). Για το σκοπό αυτό χρησιμοποιήθηκαν τα κανονικά πολύγωνα, τα οποία με τη σειρά τους απα-σχόλησαν τους μαθηματικούς για περίοδο πάνω από 2.000 χρόνια (Αρχαιότητα - K.F. Gauss).
Στο παρόν κεφάλαιο εισάγουμε την έννοια των κανονικών πολυγώνων και μελετάμε βασικές ιδιότητές τους. Εξετάζουμε την εγγραφή ορισμένων βασικών κανονικών πολυγώνων σε κύκλο και υπολογίζουμε τα στοιχεία τους. Στη συνέχεια «προσεγγίζοντας» τον κύκλο με κανονικά πολύγωνα εγγεγραμμένα ή περιγεγραμμένα σε αυτόν και χρησιμοποιώντας τον ορισμό του αριθμού π, βρίσκουμε τύπους για το μήκος κύκλου και τόξου και για το εμβαδόν κυκλικού δίσκου και τομέα.
Βασικοί Όροι: μέτρηση κύκλου, κανονικό πολύγωνο, μήκος τόξου, εμβαδόν κυκλικού τομέα, εμβαδόν κυκλικού τμήματος, τετραγωνισμός κύκλου
12. Ευθείες και επίπεδα στο χώρο
Στο κεφάλαιο αυτό δίνονται βασικοί ορισμοί και αξιώματα που διέπουν τη γεωμετρία του χώρου και μελετώνται βασικές σχέσεις μεταξύ των θεμελιωδών στοιχείων του χώρου.
Βασικοί Όροι: ευθεία, επίπεδα, σχετικές θέσεις, θεώρημα του Θαλή, ορθογώνιες ευθείες, δίεδρη γωνία, κάθετα επίπεδα
13. Στερεά σχήματα
Στο κεφάλαιο αυτό θα μελετήσουμε δύο οικογένειες στερεών σχημάτων, τα πολύεδρα και τα στερεά εκ περιστροφής. Τα πολύεδρα αποτελούνται από τμήματα επιπέδων, κατάλληλα τοποθετημένα, ώστε να σχηματίζουν ένα κλειστό στερεό σύνολο. Υπάρχουν πολλά είδη πολυέδρων, εδώ όμως θα μελετήσουμε τα απλούστερα από αυτά, όπως είναι τα πρίσματα και οι πυραμίδες. Τα στερεά εκ περιστροφής με τα οποία θα ασχοληθούμε είναι ο κύλινδρος, ο κώνος και η σφαίρα. Τα στερεά αυτά λέγονται έτσι γιατί σχηματίζονται κατά την περιστροφή επίπεδων σχημάτων, όπως είναι το ορθογώνιο παραλληλόγραμμο, το ορθογώνιο τρίγωνο και ο κύκλος. Τα πολύεδρα αποτελούν μία κατηγορία σχημάτων του χώρου, τα οποία παρουσιάζουν θεωρητικό ενδιαφέρον, είναι όμως χρήσιμα και από πλευράς εφαρμογής σε διάφορους τομείς της τεχνολογίας και της τέχνης. Στις διάφορες εφαρμογές χρησιμοποιούνται για να προσομοιάζουν σχήματα του φυσικού χώρου που συναντάμε γύρω μας και είναι σημαντικές όχι μόνο οι μετρικές αλλά και οι καθαρά γεωμετρικές ιδιότητές τους.
Βασικοί Όροι: στερεά σχήματα, πελύεδρα, πρίσμα, παραλληλεπίπεδο, κύβος, πυραμίδα, κανονική πυραμίδα, τετράεδρο, κόλουρη πυραμίδα, στερεά εκ περιστροφής, κύλινδρος, κώνος, κόλουρος κώνος, σφαίρα, κανονικά πολύεδρα