Χημεία (Γ Λυκείου Θετικών Σπουδών) - Βιβλίο Μαθητή
6.5 Ηλεκτρονιακοί τύποι - σχήματα μορίων 7.2 Στερεοϊσομέρεια (εναντιοστερεομέρεια και διαστερεομέρεια) Επιστροφή στην αρχική σελίδα του μαθήματος
(7)
ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ

 

 
ΟΙ ΣΤΟΧΟΙ
Στο τέλος αυτής της διδακτικής ενότητας θα πρέπει να μπορείς:
  • Να εξηγείς ποιος είναι ο σ και ποιος ο π δεσμός και να αναγνωρίζεις τα δύο αυτά είδη δεσμών σε ορισμένα μόρια.
  • Να εξηγείς τι είναι υβριδισμός. Να διακρίνεις τις διάφορες κατηγορίες υβριδικών τροχιακών, καθορίζοντας τη γεωμετρική τους διάταξη και δίνοντας σχετικά παραδείγματα. Να ερμηνεύεις με βάση τα προηγούμενα το σχηματισμό του απλού δεσμού C-C, του διπλού δεσμού C=C και του τριπλού δεσμού C≡C.
Εικόνα
  • Να αναγνωρίζεις τη σημασία του επαγωγικού φαινομένου για την ερμηνεία ορισμένων ιδιοτήτων χημικών ενώσεων, καθώς και του μηχανισμού ορισμένων αντιδράσεων.
  • Να ορίζεις τι είναι στερεοϊσομέρεια και να ταξινομείς αυτή σε κατηγορίες (εναντιομέρεια και διαστερεομέρεια).
  • Να αναφέρεις τι είναι εναντιομέρεια, δίνοντας σχετικά παραδείγματα. Nα εξηγήσεις τι είναι πολωμένο φως, πότε μια ένωση στρέφει το επίπεδο του πολωμένου φωτός και τι είναι ειδική στροφική ικανότητα. Να αναφέρεις ποιες είναι οι στερεοχημικές διατάξεις με τo σύστημα R, S, να περιγράφεις τις διαφορές στις ιδιότητες μεταξύ των εναντιομερών και να ορίζεις τι είναι ρακεμικό μίγμα.
  • Να αναφέρεις τι είναι διαστερεομέρεια, δίνοντας σχετικά παραδείγματα. Να βρίσκεις τον αριθμό των στερεοϊσομερών που έχει μια οργανική ένωση με ν ασύμμετρα άτομα άνθρακα και να ξεχωρίζεις ποια εξ’ αυτών είναι εναντιομερή και ποια διαστερεομερή. Να περιγράφεις τις διαφορές στις ιδιότητες μεταξύ των διαστερεομερών και να ορίζεις τι είναι μεσομορφή.
  • Να ορίζεις τι είναι γεωμετρική ισομέρεια στις άκυκλες οργανικές ενώσεις, να εξηγείς ποια είναι η βασική αιτία στην οποία οφείλεται και να δίνεις σχετικά παραδείγματα.
  • Να ταξινομείς τις οργανικές αντιδράσεις και να διακρίνεις από ένα σύνολο αντιδράσεων ποιες είναι αντιδράσεις προσθήκης, απόσπασης, πολυμερισμού, υποκατάστασης, οξειδοαναγωγής κλπ.
  • Να εξηγείς το μηχανισμό ορισμένων οργανικών αντιδράσεων π.χ. υποκατάσταση και προσθήκη.
  • Να γράφεις μια σειρά χημικών εξισώσεων που οδηγεί, θεωρητικά, στη σύνθεση ορισμένων οργανικών ενώσεων. Να διακρίνεις ορισμένες οργανικές ενώσεις με βάση τις χημικές και φυσικές τους ιδιότητες.
εικόνα

Η διαδικασία οργανικής σύνθεσης είναι πολύπλοκη. Πολλές φορές περιλαμβάνει δοκιμασίες σε πιλοτική κλίμακα (pilot plant), όπως φαίνεται στο σχήμα. Στο βάθος διακρίνεται η βιομηχανική μονάδα παραγωγής του προϊόντος, ενώ στο μέσο της εικόνας διακρίνεται η μονάδα ελέγχου της παραγωγής (χημείο).

(7) ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ

(7.1) Δομή οργανικών ενώσεων - διπλός και τριπλός δεσμός - επαγωγικό φαινόμενο

Θεωρία δεσμού σθένους (Valence bond theory)

Για την περιγραφή του ομοιοπολικού δεσμού έχουν διατυπωθεί πολλές θεωρίες. Κατ΄ αρχάς η ηλεκτρονιακή θεωρία του σθένους, που στηρίζεται στον κανόνα της οκτάδας, οι ηλεκτρονιακοί τύποι κατά Lewis και η θεωρία VSEPR, δίνουν την πληρέστερη προκβαντική αντίληψη για την περιγραφή των χημικών δεσμών, θεωρώντας τα ηλεκτρόνια ως σωματίδια τοποθετημένα σε ορισμένες θέσεις.
Σύμφωνα όμως με τις αρχές της κβαντομηχανικής το ηλεκτρόνιο δεν έχει καθορισμένη θέση, αλλά απλώνεται σε μια περιοχή του χώρου που ονομάζεται τροχιακό. Για την περιγραφή του ομοιοπολικού δεσμού, έχουν διατυπωθεί ποικίλες κβαντομηχανικές θεωρίες, καθεμιά από τις οποίες στηρίζεται σε ορισμένη σειρά παραδοχών. Οι κυριότερες απ’ αυτές είναι η θεωρία δεσμού σθένους και η θεωρία των μοριακών τροχιακών. Κάθε μοντέλο έχει τα πλεονεκτήματα και τα μειονεκτήματα του, και οι χημικοί τα χρησιμοποιούν εναλλακτικά ανάλογα με τις περιστάσεις. Όμως, η θεωρία δεσμού σθένους φαίνεται πιο απλή, γι’ αυτό και την επιλέξαμε σ’ αυτό το βιβλίο. Για συγκριτικούς λόγους παραθέτουμε τα βασικά σημεία της θεωρίας των μοριακών τροχιακών στο πλαίσιο δίπλα.
Οι βασικές αρχές της θεωρίας δεσμού σθένους είναι:
1. Κατά την ανάπτυξη ομοιοπολικού δεσμού ανάμεσα σε δύο άτομα, τροχιακά της στιβάδας σθένους του ενός ατόμου επικαλύπτουν τροχιακά της στιβάδας σθένους του άλλου.
2. Αν στο κάθε τροχιακό που συμμετέχει στο μηχανισμό αυτό της επικάλυψης περιέχεται ένα μονήρες ηλεκτρόνιο, τότε ηλεκτρόνια με αντιπαράλληλα spin δημιουργούν ζεύγη ηλεκτρονίων που ανήκουν και στα δύο άτομα. Η έλξη του ζεύγους ηλεκτρονίων από τους πυρήνες των δύο ατόμων οδηγεί στην ανάπτυξη του δεσμού ανάμεσα τους.
3. Η ισχύς του δεσμού είναι τόσο μεγαλύτερη, όσο ο βαθμός επικάλυψης των τροχιακών αυτών (με ένα μονήρες ηλεκτρόνιο) είναι μεγαλύτερος.

Δεσμοί σ (σίγμα) και δεσμοί π (πι)

Για να εμπεδώσουμε τα προηγούμενα θα εφαρμόσουμε τη θεωρία δεσμού σθένους για την ερμηνεία του ομοιοπολικού δεσμού Η-Η στο απλούστερο μόριο, το μόριο του υδρογόνου. Όταν πλησιάζουν δύο άτομα υδρογόνου για να σχηματίσουν το μόριο Η2, το τροχιακό του ενός αρχίζει να επικαλύπτει το τροχιακό του άλλου. Όσο μάλιστα πλησιάζουν τα δύο άτομα υδρογόνου και το ένα έλκεται από τον πυρήνα του άλλου, τόσο
ελαττώνεται η συνολική τους ενέργεια. Από ένα σημείο και πέρα όμως οι πυρήνες απωθούνται ισχυρότατα και αρχίζει να αυξάνεται δραματικά η ενέργεια του συστήματος (βλέπε σχήμα 7.1). Αυτό σημαίνει ότι υπάρχει μία απόσταση μεταξύ των πυρήνων, στην οποία επιτυγχάνεται η ελαχίστη ενέργεια. Αυτή η απόσταση ονομάζεται μήκος δεσμού. Το μήκος δεσμού για το δεσμό υδρογόνο-υδρογόνο είναι 0,74 Ǻ (74pm). Στο σχήμα 7.1 φαίνεται επίσης ότι, η ενέργεια που ελευθερώνεται κατά το σχηματισμό του ομοιοπολικού δεσμού Η-Η. είναι 436 kJ/mol.
εικόνα

ΣΧΗΜΑ 7.1 Ενέργεια του συστήματος Η-Η σε συνάρτηση με την απόσταση των πυρήνων των δύο ατόμων υδρογόνου.



Το ηλεκτρονιακό νέφος, που προκύπτει από την επικάλυψη των δύο ατομικών τροχιακών των ατόμων του Η, έχει κυλινδρική συμμετρία, όπως φαίνεται στο διπλανό σχήμα Είναι διευθετημένο κατά μήκος του άξονα που συνδέει τους δύο πυρήνες Η και περικλείει το κοινό ζεύγος ηλεκτρονίων που δημιουργείται. Ο ομοιοπολικός αυτός δεσμός, που είναι προϊόν της s-s επικάλυψης χαρακτηρίζεται σ (σίγμα) δεσμός.
Ο σ (σίγμα) δεσμός που περιγράψαμε δημιουργήθηκε από επικάλυψη (overlap) s τροχιακού + s τροχιακού. Σίγμα (σ) δεσμοί μπορούν να δημιουργηθούν και με επικαλύψεις s-p και p-p, όπως φαίνεται στο σχήμα 7.2. Συνοψίζοντας, έχουμε:
  • σ (σίγμα) δεσμοί προκύπτουν με επικαλύψεις s-s, s-p και p-p ατομικών τροχιακών κατά τον άξονα που συνδέει τους πυρήνες των δύο συνδεόμενων ατόμων. Κατ’ αυτή τη διεύθυνση εξασφαλίζεται η μεγαλύτερη δυνατή επικάλυψη.
εικόνα

ΣΧΗΜΑ 7.2 Με επικάλυψη ενός s και ενός p ατομικού τροχιακού ή ενός p μ ε ένα p ατομικό τροχιακό, κατά μήκος του άξονα που συνδέει τους πυρήνες των δύο ατόμων, προκύπτει ο δεσμός σ .


Αν τα δύο ατομικά τροχιακά είναι παράλληλα, δεν είναι δυνατόν να γίνει επικάλυψη αυτών κατά μήκος του άξονα που συνδέει τους πυρήνες των ατόμων. Στην περίπτωση αυτή έχουμε πλευρική επικάλυψη των αντίστοιχων ηλεκτρονιακών νεφών με αποτέλεσμα τη δημιουργία του π (πι) δεσμού. Στο π (πι) δεσμό ο άξονας, που συνδέει τους δύο πυρήνες των ατόμων, βρίσκεται σε επιφάνεια στην οποία δεν έχει πιθανότητα να υπάρχει το ηλεκτρονιακό νέφος (κομβική επιφάνεια), όπως φαίνεται στο διπλανό σχήμα. Να παρατηρήσουμε επίσης ότι:
1. Τα s τροχιακά δε συμμετέχουν σε π δεσμούς, καθώς δεν είναι δυνατή η πλευρική τους επικάλυψη.
2. Ο δεσμός π δημιουργείται μόνο εφ’ όσον έχει προηγηθεί ο σχηματισμός ενός σ δεσμού.
3. Ο σ δεσμός είναι ισχυρότερος του π, καθώς στην πρώτη περίπτωση επιτυγχάνεται μεγαλύτερη επικάλυψη τροχιακών.
Συνοψίζοντας, έχουμε:
  • Οι π (πι) δεσμοί προκύπτουν με πλευρικές επικαλύψεις p-p ατομικών τροχιακών (των οποίων οι άξονες είναι παράλληλοι) και είναι ασθενέστεροι των σ.

Παραδείγματα σχηματισμού μορίων

Στη συνεχεία θα περιγράψουμε το σχηματισμό ορισμένων μορίων με τη θεωρία δεσμού σθένους.
α. HF: Κατ’ αρχάς γράφουμε την ηλεκτρονιακή δομή των ατόμων:
εικόνα
Μεταξύ του ηλεκτρονίου 1s του υδρογόνου και 2pz του F δημιουργείται δεσμός σ, όπως φαίνεται στο σχήμα 7.3, ο οποίος κατά τα γνωστά χαρακτηρίζεται από κυλινδρική συμμετρία. Ανάλογοι δεσμοί
σχηματίζονται και στα μόρια των υπολοίπων υδραλογόνων (HCl, HBr, HI).
εικόνα

ΣΧΗΜΑ 7.3 Σχηματισμός ενός σ δεσμού στο μόριο του HF.


β. Ν2: Για την ερμηνεία των δεσμών στο μόριο του N2 γράφουμε πρώτα την κατανομή ηλεκτρονίων στα άτομα που θα συνδεθούν:
εικόνα
Κάθε άτομο Ν διαθέτει τρία p τροχιακά με μονήρη ηλεκτρόνια. Το ένα εξ αυτών επικαλύπτεται με το αντίστοιχο του άλλου ατόμου κατά τον άξονα που συνδέει τους πυρήνες, σχηματίζοντας ένα σ δεσμό, ωστόσο, απομένουν δύο ακόμη p τροχιακά με μονήρη ηλεκτρόνια, τα οποία με πλευρική p-p επικάλυψη δημιουργούν δύο π δεσμούς, όπως δείχνει το σχήμα 7.4.
εικόνα

ΣΧΗΜΑ 7.4 Ο σχηματισμός του μορίου του Ν2 περιλαμβάνει ένα σ και δύο π δεσμούς.

Υβριδισμός

Ο σχηματισμός όμως δεσμών με απλή επικάλυψη ατομικών τροχιακών, σε πολλές περιπτώσεις, αδυνατεί να ερμηνεύσει τη δομή των μορίων, όπως π.χ. των οργανικών ενώσεων. Μια προωθημένη αντίληψη για την ερμηνεία του ομοιοπολικού δεσμού με βάση τη θεωρία δεσμού σθένους αποτελεί ο υβριδισμός.

sp υβριδισμός

Για να ερμηνεύσουμε τη δομή στο μόριο του φθοριούχου βηρυλλίου (BeF2 ) με τη θεωρία δεσμού σθένους θα πρέπει κατ΄ αρχάς να πάρουμε την ηλεκτρονιακή δομή των ατόμων τους:
εικόνα
Παρατηρούμε ότι το Be δεν μπορεί να σχηματίσει κανένα ομοιοπολικό δεσμό, αφού δε διαθέτει μονήρες ηλεκτρόνιο. Για να εξηγήσουμε το σχηματισμό του BeF2 θεωρούμε ότι το ένα από τα δύο ηλεκτρόνια του τροχιακού 2s προωθείται σε τροχιακό 2p. Δηλαδή, έχουμε:
εικόνα
Με βάση την παραπάνω ηλεκτρονιακή διάταξη, θα περίμενε κανείς ότι οι δεσμοί που σχηματίζει το Be στο BeF2 είναι διαφορετικοί, ο ένας s + p και ο άλλος p + p. Έχει όμως αποδειχθεί πειραματικά ότι οι δύο δεσμοί στο BeF2 είναι ισότιμοι μεταξύ τους.
Αυτή η ομοιότητα των δύο δεσμών μπορεί να ερμηνευθεί με βάση τον υβριδισμό των ατομικών τροχιακών, ο οποίος προτάθηκε από τον Pauling το 1931.
  • Υβριδισμός είναι ο γραμμικός συνδυασμός (πρόσθεση ή αφαίρεση) ατομικών τροχιακών προς δημιουργία νέων ισότιμων ατομικών τροχιακών (υβριδικών τροχιακών).
Τα υβριδικά τροχιακά είναι αριθμητικά ίσα με τα συνδυαζόμενα ατομικά τροχιακά, διαφέρουν όμως απ’ αυτά ως προς την ενέργεια, τη μορφή και τον προσανατολισμό. Έχουν σχήμα ζεύγους ομοαξονικών αλλά άνισου μεγέθους λοβών (βλέπε σχήμα 7.5). Τέλος, να σημειωθεί ότι, τα ηλεκτρόνια που υπήρχαν στα αρχικά ατομικά τροχιακά, κατανέμονται στα ισάριθμα υβριδικά τροχιακά που αντικατέστησαν, σύμφωνα με τις αρχές της ηλεκτρονιακής δόμησης, π.χ. αρχή ελάχιστης ενέργειας.
Έτσι, στην περίπτωση του Be στο BeF2 τα s και p ατομικά τροχιακά του ατόμου του Be συνδυάζονται και δημιουργούν δύο νέα όμοια μεταξύ τους τροχιακά. Τα δύο αυτά νέα τροχιακά ονομάζονται sp
υβριδικά τροχιακά και στη δημιουργία τους έχει συνεισφέρει κατά 50% το τροχιακό s και κατά 50% το τροχιακό p. Στο σχήμα 7.5 φαίνεται ο σχηματισμός αυτών των δύο υβριδικών τροχιακών. Να παρατηρήσουμε ότι τα υβριδικά τροχιακά έχουν ευθύγραμμη διάταξη.
εικόνα

ΣΧΗΜΑ 7.5 Από το συνδυασμό ενός s και ενός p ατομικού τροχιακού σχηματίζονται δύο sp υβριδικά τροχιακά που είναι ευθύγραμμα διατεταγμένα.

Τα δύο αυτά sp υβριδικά τροχιακά του Be επικαλύπτουν τα δύο p τροχιακά των ατόμων του F και σχηματίζουν δύο σ δεσμούς, όπως φαίνεται στο παρακάτω σχήμα:
εικόνα

ΣΧΗΜΑ 7.6 Σχηματισμός δύο σ δεσμών με επικάλυψη δύο sp υβριδικών τροχιακών του Be με ισάριθμα p τροχιακά του F για τη δημιουργία του μορίου BeF2.


sp2 υβριδισμός

Αντίστοιχα, για την ερμηνεία των δεσμών στο μόριο του BF3 έχουμε σχετικά με την ηλεκτρονιακή δομή του ατόμου Β:
εικόνα

θεμελιώδης κατάσταση

προωθημένη κατάσταση

υβριδισμός sp2
Στο άτομο, δηλαδή, του Β σχηματίζονται τρία ισότιμα υβριδικά τροχιακά (sp2), με συνδυασμό ενός s και δύο p ατομικών τροχιακών. Παρατηρούμε ότι τα sp2 υβριδικά τροχιακά έχουν επίπεδη τριγωνική διάταξη, όπως φαίνεται στο παρακάτω σχήμα.
εικόνα

ΣΧΗΜΑ 7.7 Με συνδυασμό ενός s και δύο p ατομικών τροχιακών προκύπτουν τρία sp2 υβριδικά τροχιακά που έχουν επίπεδη τριγωνική διάταξη.

Τα τρία αυτά sp2 υβριδικά τροχιακά του B επικαλύπτουν τα τρία p τροχιακά των ατόμων του F και σχηματίζουν τρεις σ δεσμούς, όπως φαίνεται στο παρακάτω σχήμα:
εικόνα

ΣΧΗΜΑ 7.8 Σχηματισμός τριών σ δεσμών με επικάλυψη των τριών sp2 υβριδικών τροχιακών του B με ισάριθμα τρία 2p τροχιακά ατόμων F.


sp3 υβριδισμός

Για να ερμηνεύσουμε τους δεσμούς στο μόριο του CH4 με τη θεωρία δεσμού σθένους και να εξηγήσουμε τη στερεοχημική του διάταξη
σκεφτόμαστε ανάλογα με τα προηγούμενα παραδείγματα. Δηλαδή, κατ’ αρχάς παίρνουμε την ηλεκτρονιακή δομή του ατόμου C:
εικόνα

θεμελιώδης κατάσταση

προωθημένη κατάσταση

υβριδισμός sp3
Τα τέσσερα ισότιμα υβριδικά τροχιακά (sp3) προκύπτουν με συνδυασμό ενός s και τριών p ατομικών τροχιακών και έχουν τετραεδρική διάταξη:
εικόνα

ΣΧΗΜΑ 7.9 Με συνδυασμό ενός s και τριών p ατομικών τροχιακών. προκύπτουν τέσσερα sp3 υβριδικά τροχιακά που έχουν τετραεδρική διάταξη.

Με βάση τα παραπάνω μπορεί να ερμηνευθεί ο σχηματισμός του CH4. Στην περίπτωση αυτή έχουμε σχηματισμό τεσσάρων σ δεσμών με επικάλυψη των τεσσάρων sp3 υβριδικών τροχιακών του C με τέσσερα s τροχιακά των ατόμων Η, όπως φαίνεται στο σχήμα 7.10.

εικόνα

ΣΧΗΜΑ 7.10 Σχηματισμός μορίου του CH4.


Απλός δεσμός C-C

Στα μόρια των κορεσμένων υδρογονανθράκων υφίστανται σ δεσμοί του τύπου s-sp3 ανάμεσα στα άτομα του άνθρακα και στα άτομα του υδρογόνου και σ δεσμοί του τύπου sp3-sp3 ανάμεσα στα άτομα άνθρακα.

εικόνα

ΣΧΗΜΑ 7.11 Σχηματισμός μορίου του C2H6.


Διπλός δεσμός C= C

Με βάση τη θεωρία δεσμού σθένους και τον υβριδισμό, μπορούμε να ερμηνεύσουμε το διπλό δεσμό > C = C 2 = CH2.
Ως γνωστόν η ηλεκτρονιακή δομή του ατόμου του άνθρακα είναι η ακόλουθη:
εικόνα

θεμελιώδης κατάσταση

προωθημένη κατάσταση

υβριδισμός sp2
Στο μόριο του αιθυλενίου κάθε άτομο άνθρακα έχει τρία sp2 υβριδικά τροχιακά και παραμένει ένα τροχιακό p, το οποίο είναι προσανατολισμένο καθέτως προς το επίπεδο των υβριδικών τροχιακών.
Ανάμεσα στα άτομα του άνθρακα και στα άτομα του υδρογόνου δημιουργούνται σ δεσμοί του τύπου sp2-s. Τα δύο άτομα C συνδέονται μεταξύ τους με ένα σ δεσμό του τύπου sp2 - sp2 και ένα π που προκύπτει με επικάλυψη pz - pz.
Δηλαδή, στο διπλό δεσμό > C = C σ και ο άλλος είναι π. Ο σ δεσμός είναι πιο σταθερός από τον π. Η περιγραφή του διπλού δεσμού με τον υβριδισμό δικαιολογεί πολλές από τις ιδιότητες του διπλού δεσμού, π.χ. αντιδράσεις προσθήκης.
εικόνα

ΣΧΗΜΑ 7.12 Σχηματισμός μορίου του αιθενίου (CH2=CH2 ). Στο αριστερό διάγραμμα φαίνονται οι σ δεσμοί, ενώ στο δεξί οι π δεσμοί.

Με ανάλογες σκέψεις μπορεί να περιγραφεί ο σχηματισμός του τριπλού δεσμού στο ακετυλένιο HC≡CH.
εικόνα

θεμελιώδης κατάσταση

προωθημένη κατάσταση
Στο άτομο του άνθρακα συνδυάζονται δύο τροχιακά ένα s και ένα p και δημιουργούνται δύο sp υβριδικά τροχιακά ενώ περισσεύουν δύο p τροχιακά (py , pz), με ένα μονήρες ηλεκτρόνιο το καθένα.
εικόνα
Κατά το σχηματισμό του HC≡CH, κάθε άτομο C ενώνεται με σ δεσμό μ’ ένα άτομο Η (επικάλυψη τροχιακών sp-s), ενώ τα δύο άτομα C συνδέονται μεταξύ τους με ένα δεσμό σ (επικάλυψη τροχιακών sp-p) και δύο π δεσμούς (επικάλυψη τροχιακών p-p), όπως φαίνεται στο σχήμα 5.13.
εικόνα

ΣΧΗΜΑ 7.13 Σχηματισμός μορίου του αιθινίου (C2H2). Διακρίνονται οι σ και οι π δεσμοί.




Επαγωγικό φαινόμενο

Πολλές φορές η κατανομή των ηλεκτρονίων στους ομοιοπολικούς δεσμούς δεν είναι συμμετρική. Δηλαδή, τα δεσμικά ηλεκτρόνια έλκονται ισχυρότερα από το ένα άτομο απ’ ότι το άλλο, με αποτέλεσμα να δημιουργείται ένας πολικός ομοιοπολικός δεσμός, ο οποίος επηρεάζει σε μεγάλο βαθμό τη χημική δράση του μορίου. Η πολικότητα αυτή εξαρτάται κατά κύριο λόγο από τη διαφορά ηλεκτραρνητικότητας μεταξύ των συνδεομένων ατόμων. Όμως, η πόλωση ενός δεσμού μπορεί να επηρεαστεί και από γειτονικά άτομα ή ομάδες ατόμων που έλκουν ή απωθούν ηλεκτρόνια.
  • Επαγωγικό φαινόμενο ονομάζεται η μετατόπιση ηλεκτρονίων (πόλωση) ενός δεσμού, λόγω της παρουσίας γειτονικών ομάδων ή ατόμων.
Για παράδειγμα στο 1-χλωροβουτάνιο ο δεσμός C-Cl είναι πολικός γιατί το Cl, ως πλέον ηλεκτραρνητικό του C, έλκει περισσότερο το κοινό ζεύγος ηλεκτρονίων. Αυτό μπορούμε να το συμβολίσουμε ως εξής:
εικόνα
όπου, το βέλος από σύμβαση, κατευθύνεται προς το άτομο που έλκει περισσότερο το ζεύγος ηλεκτρονίων. Η πόλωση αυτή μεταξύ C-Cl μεταδίδεται και στους γειτονικούς δεσμούς C-C, με αποτέλεσμα να τους πολώνει, σύμφωνα με το σχήμα:
εικόνα
Δηλαδή, η παρουσία του Cl προκαλεί έλλειμμα ηλεκτρικού φορτίου στο πρώτο άτομο άνθρακα (φορτίο δ+) Αυτό με τη σειρά του έλκει ηλεκτρόνια από το δεύτερο άτομο άνθρακα (που αποκτά μικρότερο φορτίο δδ+) και το δεύτερο έλκει ηλεκτρόνια από το τρίτο άτομο άνθρακα. (που αποκτά ακόμα μικρότερο φορτίο δδδ+). Μετά το τρίτο άτομο άνθρακα η μετατόπιση ηλεκτρονίων θεωρείται αμελητέα και μπορεί να αγνοηθεί.
  • Οι υποκαταστάτες (άτομα ή ομάδες ατόμων) που έλκουν ηλεκτρόνια, π.χ. αλογόνα προκαλούν το –Ι επαγωγικό φαινόμενο. Η σειρά αύξησης του –Ι επαγωγικού φαινομένου για μια σειρά υποκαταστατών είναι: C6H5- 2 2.
  • Οι υποκαταστάτες που απωθούν τα ηλεκτρόνια π.χ. μέταλλα προκαλούν το +Ι επαγωγικό φαινόμενο. Η σειρά αύξησης του +Ι επαγωγικού φαινομένου για μια σειρά υποκαταστατών είναι:
    H- 3- 2H5- 3)2CH- 3)3C- - -
Με το επαγωγικό φαινόμενο ερμηνεύονται πολλές ιδιότητες οργανικών ενώσεων, καθώς και μηχανισμοί πολλών αντιδράσεων. Να θυμίσουμε ότι με το επαγωγικό φαινόμενο ερμηνεύεται πολλές φορές η ισχύς ενός οξέος ή μιας βάσης σε συσχετισμό με τη μοριακή δομής τους (π.χ. γιατί το χλωροαιθανικό οξύ είναι ισχυρότερο οξύ από το αιθανικό οξύ, βλέπε κεφάλαιο 3).