Σχ. 1.17 Απομακρύνουμε το σώμα Σ από τη θέση ισορροπίας Ο και το αφήνουμε ελεύθερο στο σημείο Ρ. Το σώμα λόγω τριβών δεν επιστρέφει στο Ρ.
Εικ. 1.4 Ο καταδύτης θέτει σε ταλάντωση το βατήρα. Το πλάτος της ταλάντωσης μειώνεται, λόγω τριβών.
Σχ. 1.18 Στο σχήμα παριστάνονται σχηματικά τα διανύσματα της ταχύτητας (κόκκινο χρώμα) και της δύναμης F' που αντιτίθεται στην κίνηση (πράσινο χρώμα) στις διάφορες θέσεις κατά την ταλάντωση ενός σώματος.
Σχ. 1.19 Μεταβάλλοντας την πίεση μέσα στο δοχείο μεταβάλλουμε τη σταθερά απόσβεσης του ταλαντούμενου συστήματος.
|
1-5 ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
Α. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Το σώμα Σ του σχήματος 1.17 απομακρύνεται κατά Α από τη θέση ισορροπίας και αφήνεται ελεύθερο στη θέση Ρ. Όταν ολοκληρώσει μια ταλάντωση, όσο μικρή και αν είναι η τριβή του με το δάπεδο, δε θα επιστρέψει στο σημείο Ρ. Αν το σώμα συνεχίσει την ταλάντωσή του, χωρίς εξωτερική επέμβαση, το πλάτος της ταλάντωσης συνεχώς θα μειώνεται και μετά από ορισμένο χρόνο θα σταματήσει. Μια τέτοια ταλάντωση ονομάζεται φθίνουσα ή αποσβεννύμενη ταλάντωση. Φθίνουσα είναι η ταλάντωση που κάνει ένα σώμα όταν είναι κρεμασμένο από ελατήριο και κινείται μέσα στον αέρα, όπως και η ταλάντωση του εκκρεμούς. Όλες οι ταλαντώσεις στο μακρόκοσμο είναι φθίνουσες γιατί καμιά κίνηση δεν είναι απαλλαγμένη από τριβές και αντιστάσεις. Η απόσβεση (ελάττωση του πλάτους) οφείλεται σε δυνάμεις που αντιτίθενται στην κίνηση. Οι δυνάμεις αυτές μεταφέρουν ενέργεια από το ταλαντούμενο σύστημα στο περιβάλλον. Έτσι, η μηχανική ενέργεια του συστήματος με την πάροδο του χρόνου ελαττώνεται και το πλάτος της ταλάντωσης μειώνεται. Ιδιαίτερη σημασία έχουν οι φθίνουσες ταλαντώσεις στις οποίες η αντιτιθέμενη δύναμη είναι ανάλογη της ταχύτητας. F' = -bυ Τέτοια δύναμη είναι η δύναμη αντίστασης που ασκείται σε μικρά αντικείμενα που κινούνται μέσα στον αέρα ή μέσα σε υγρό. To b είναι μια σταθερά που ονομάζεται σταθερά απόσβεσης και εξαρτάται από τις ιδιότητες του μέσου καθώς και από το σχήμα και το μέγεθος του αντικειμένου που κινείται. Ο ρυθμός με τον οποίο μειώνεται το πλάτος μιας ταλάντωσης εξαρτάται από την τιμή της σταθεράς b. Πειραματικά ο ρόλος της σταθεράς b σε μια φθίνουσα ταλάντωση μπορεί να φανεί με τον εξής τρόπο: Με τη χρήση μιας αεραντλίας μπορούμε να μεταβάλουμε την πίεση του αέρα στο εσωτερικό του δοχείου (σχ. 1.19), μέσα στο οποίο ταλαντώνεται η σφαίρα Σ. Η μεταβολή της πίεσης μέσα στο δοχείο μεταβάλλει τη σταθερά απόσβεσης b. Στην περίπτωση που το ελατήριο είναι ιδανικό, αν αφαιρούσαμε όλο τον αέρα -κάτι που στην πράξη είναι αδύνατο- η σταθερά απόσβεσης θα ήταν μηδέν και η ταλάντωση αμείωτη (σχ. 1.20α). Όταν αυξάνεται η πίεση αυξάνεται η τιμή της σταθεράς b και η απόσβεση είναι ταχύτερη. Μελετώντας φθίνουσες ταλαντώσεις αυτής της κατηγορίας διαπιστώνουμε ότι: |
α) Η περίοδος, για ορισμένη τιμή της σταθεράς b, διατηρείται σταθερή και ανεξάρτητη από το πλάτος (σχ.1.20β). Όταν η σταθερά b μεγαλώνει το πλάτος της ταλάντωσης μειώνεται πιο γρήγορα (σχ.1.20γ) και η περίοδος παρουσιάζει μια μικρή αύξηση που στα πλαίσια αυτού του βιβλίου θεωρείται αμελητέα. β) Σε ακραίες περιπτώσεις στις οποίες η σταθερά απόσβεσης παίρνει πολύ μεγάλες τιμές, η κίνηση γίνεται απεριοδική, δηλαδή, ο ταλαντωτής, επιστρέφει στη θέση ισορροπίας χωρίς ποτέ να την υπερβεί (σχ. 1,20δ) Κάτι τέτοιο θα μπορούσε να συμβεί αν το σύστημα ελατήριο σώμα βρισκόταν μέσα σ' ένα παχύρρευστο υγρό. γ) Το πλάτος της ταλάντωσης μειώνεται εκθετικά με το χρόνο. Ισχύει δηλαδή η σχέση A=A0e-Λt Το Λ είναι μια σταθερά που εξαρτάται από τη σταθερά απόσβεσης και τη μάζα του ταλαντούμενου σώματος. Από την παραπάνω σχέση προκύπτει ότι ο λόγος δύο διαδοχικών μέγιστων απομακρύνσεων προς την ίδια κατεύθυνση διατηρείται σταθερός, δηλαδή
|
Σχ. 1.20 (α) Όταν η σταθερά απόσβεσης είναι μηδέν η ταλάντωση είναι αμείωτη.
(β) Φθίνουσα ταλάντωση. Η περίοδος διατηρείται σταθερή και ανεξάρτητη του πλάτους, (γ) Όταν ο συντελεστής απόσβεσης μεγαλώνει, το πλάτος της ταλάντωσης μειώνεται πιο γρήγορα, (δ) Όταν ο συντελεστής απόσβεσης είναι πολύ μεγάλος η κίνηση είναι απεριοδική.
Σχ. 1.21 Σε μια φθίνουσα ταλάντωση ο λόγος των διαδοχικών μέγιστων είναι σταθερός.
|
Σχ. 1.22 Κύκλωμα φθινουσών ηλεκτρικών ταλαντώσεων.
Σχ. 1.23 (α) Αμείωτη ηλεκτρική ταλάντωση, (β) και (γ) Φθίνουσες ηλεκτρικές ταλαντώσεις, (δ) Όταν η αντίσταση είναι πολύ μεγάλη το φαινόμενο δεν είναι περιοδικό.
|
Το σύστημα ανάρτησης του αυτοκινήτου είναι ένα σύστημα αποσβεννύμενων ταλαντώσεων. Τα αμορτισέρ εξασφαλίζουν δύναμη απόσβεσης -που εξαρτάται από την ταχύτητα- τέτοια, ώστε όταν το αυτοκίνητο περνά από ένα εξόγκωμα του δρόμου, να μη συνεχίζει να ταλαντώνεται για πολύ χρόνο. Καθώς τα αμορτισέρ παλιώνουν και φθείρονται, η τιμή του b ελαττώνεται και η ταλάντωση διαρκεί περισσότερο. Η φθορά αυτή μειώνει την ασφάλεια, επειδή οι ρόδες έχουν λιγότερη επαφή με το έδαφος. Ενώ όμως στην περίπτωση του αυτοκινήτου είναι επιθυμητή η μεγάλη απόσβεση, σε άλλα συστήματα, όπως σε ένα εκκρεμές ρολόι, επιδιώκεται η ελαχιστοποίηση της απόσβεσης.
Για να είναι σε ένα κύκλωμα LC (σχ. 1.22) η ηλεκτρική ταλάντωση αμείωτη δεν πρέπει να υπάρχει απώλεια ενέργειας, κάτι που πρακτικά είναι αδύνατο. Οι ηλεκτρικές ταλαντώσεις είναι φθίνουσες. Το πλάτος του ρεύματος καθώς και το μέγιστο φορτίο στον πυκνωτή μικραίνουν και τελικά το κύκλωμα παύει να ταλαντώνεται. Στην περίπτωση των ηλεκτρικών ταλαντώσεων, ο κύριος λόγος της απόσβεσης είναι η ωμική αντίσταση, η αύξηση της οποίας συνεπάγεται πιο γρήγορη απόσβεση της ταλάντωσης και μικρή αύξηση της περιόδου της. Τα κυκλώματα LC που χρησιμοποιούνται στην πράξη παρουσιάζουν μικρή αντίσταση και η αύξηση της περιόδου μπορεί να θεωρηθεί αμελητέα. Για ορισμένη τιμή της αντίστασης, η περίοδος είναι σταθερή. Αν η τιμή της αντίστασης υπερβεί κάποιο όριο η ταλάντωση γίνεται απεριοδική. |