Εισαγωγικό ένθετο
Όλοι είχαμε την εμπειρία ενός ηλεκτρικού «τινάγματος» όταν ακουμπήσαμε το αμάξωμα ενός αυτοκινήτου, ή όταν σηκωθήκαμε από μία πλαστική καρέκλα, ή όταν αγγίξαμε την οθόνη ενός υπολογιστή. Τα παραπάνω φαινόμενα και πολλά άλλα, οφείλονται σε στατικά (ακίνητα) ηλεκτρικά φορτία, που συγκεντρώθηκαν σε κάποια περιοχή των σωμάτων που ηλεκτρίσθηκαν. Εξάλλου για πολλούς αιώνες ήταν γνωστή η ιδιότητα του ήλεκτρου να έλκει ελαφρά αντικείμενα, αφού το τρίψουμε σε ένα κομμάτι ύφασμα. Διαπιστώθηκε με πειράματα, ότι την ιδιότητα αυτή αποκτούν και άλλα σώματα όπως ο εβονίτης, το γυαλί, το ρετσίνι, το νάυλον, το λάστιχο, η πορσελάνη, η μίκα κ.ά. (πίνακας I). Τα ηλεκτρισμένα σώματα χωρίζονται σε δύο ομάδες. Εκείνα που εμφανίζουν συμπεριφορά όμοια με την ηλεκτρισμένη ράβδο γυαλιού ονομάστηκαν θετικά ηλεκτρισμένα, και εκείνα που εμφανίζουν συμπεριφορά όμοια με την ηλεκτρισμένη ράβδο εβονίτη ονομάστηκαν αρνητικά ηλεκτρισμένα. Η θετική και αρνητική ηλέκτριση, αποδόθηκε στα θετικά και αρνητικά φορτία αντίστοιχα. Δύο θετικά ή δύο αρνητικά φορτία ονομάζονται ομώνυμα φορτία. Ένα θετικό και ένα αρνητικό ηλεκτρικό φορτίο, ονομάζονται ετερώνυμα φορτία. Οι δυνάμεις που αναπτύσσονται μεταξύ φορτισμένων σωμάτων μπορεί να είναι ελκτικές ή απωστικές (Εικ. 1).
(α) Τα ομώνυμα φορτία απωθούνται. (β) Τα ετερώνυμα φορτία έλκονται. Εικόνα 1.
Δομή της ύλης - Το ηλεκτρόνιο Όλα τα σώματα αποτελούνται από άτομα. Το μοντέλο που θα χρησιμοποιούμε για τα άτομα οικοδομείται από ένα πυρήνα, ο οποίος περιέχει τα πρωτόνια που έχουν όλα το ίδιο θετικό ηλεκτρικό φορτίο και τα νετρόνια που είναι ηλεκτρικά ουδέτερα. |
Πίνακας I: Ο Β. Franklin ονόμασε τα υλικά της ομάδας (Α) θετικά ηλεκτρισμένα και τα υλικά της ομάδας (Β) αρνητικά ηλεκτρισμένα. |
Γύρω από τον πυρήνα περιστρέφονται τα ηλεκτρόνια. Κάθε ηλεκτρόνιο έχει αρνητικό ηλεκτρικό φορτίο που είναι κατά απόλυτη τιμή ίσο με το θετικό φορτίο του πρωτονίου. Το φορτίο του ηλεκτρονίου είναι η μικρότερη ποσότητα αρνητικού ηλεκτρικού φορτίου που εμφανίζεται ελεύθερη στη φύση (Εικ. 2). Κάθε άτομο περιέχει ίσο αριθμό πρωτονίων και ηλεκτρονίων γι' αυτό και είναι ηλεκτρικά ουδέτερο. Αν διαταραχθεί η ισορροπία αυτή, τότε λέμε ότι «ηλεκτρίζεται». Τα πρωτόνια και τα νετρόνια του πυρήνα δεν είναι δυνατό να μετακινηθούν με απλές φυσικές μεθόδους αντίθετα τα ηλεκτρόνια, είναι δυνατό να μετακινηθούν με απλές φυσικές μεθόδους, π.χ. με την τριβή ενός σώματος με κάποιο άλλο σώμα. Το ηλεκροσκόπιο Το ηλεκτροσκόπιο είναι όργανο που χρησιμοποιείται στα εργαστήρια για την ανίχνευση του ηλεκτρικού φορτίου. Η μορφή που συνήθως χρησιμοποιείται είναι το ηλεκτροσκόπιο με δείκτη (Εικ. 3). Αποτελείται από μία μεταλλική ράβδο, που στο πάνω άκρο της οποίας είναι στερεωμένο ένα μεταλλικό σφαιρίδιο. Στο μέσο της μεταλλικής ράβδου υπάρχει ένας μεταλλικός δείκτης, (συνήθως φύλλο αλουμινίου). Το σύστημα βρίσκεται μέσα σε μεταλλικό κουτί. Όταν η μεταλλική ράβδος με το δείκτη φορτισθούν, απωθούνται λόγω του ομόσημου φορτίου τους. Όσο μεγαλύτερο είναι το ηλεκτρικό φορτίο τόσο μεγαλύτερη είναι η γωνία που σχηματίζεται μεταξύ ράβδου και δείκτη. Τρόποι ηλέκτρισης 1. Με τριβή Αν τρίψουμε μία ράβδο γυαλιού με ένα μεταξωτό ύφασμα, τότε ηλεκτρόνια της ράβδου μεταφέρονται στο ύφασμα. Η ράβδος έχει αποκτήσει θετικό ηλεκτρικό φορτίο (έλλειμα e-), ενώ το ύφασμα αρνητικό ηλεκτρικό φορτίο (πλεόνασμα e-). Αντίστοιχα, τριβή ράβδου από εβονίτη με τρίχωμα γάτας προκαλεί μετακίνηση ηλεκτρονίων από το τρίχωμα στον εβονίτη. Έχουμε λοιπόν φόρτιση του εβονίτη με αρνητικό φορτίο (πλεόνασμα ηλεκτρονίων) και φόρτιση του τριχώματος με θετικό φορτίο (έλλειμμα ηλεκτρονίων) (Εικ. 4). 2. Με επαγωγή α. Πλησιάζουμε μία αρνητικά φορτισμένη ράβδο στο σφαιρίδιο ηλεκτροσκοπίου. Ο δείκτης αποκλίνει από την αρχική κατακόρυφη θέση του. Αυτό συμβαίνει γιατί τα ηλεκτρόνια (σφαιριδίου - ράβδου - δείκτη) απωθούνται προς τη μεταλλική ράβδο και το δείκτη, οπότε η ράβδος και ο δείκτης φορτίζονται αρνητικά ενώ το σφαιρίδιο θετικά (Εικ. 5α). β. Στη συνέχεια ακουμπάμε με το δάκτυλό μας το σφαιρίδιο του ηλεκτροσκοπίου. Ο δείκτης επανέρχεται στην αρχική του θέση. Αυτό συμβαίνει γιατί τα ηλεκτρόνια μέσω του σώματός μας μεταφέρονται στη γη. Το σφαιρίδιο παραμένει φορτισμένο θετικά (Εικ. 5β). |
Το άτομο. Εικόνα 2. Ηλετροσκόπιο. Εικόνα 3. Ηλέκτριση με τριβή. Εικόνα 4. |
γ. Μετά απομακρύνουμε το δάκτυλό μας από το σφαιρίδιο. Παρατηρούμε ότι το σύστημα παραμένει αμετάβλητο (Εικ. 5γ). δ. Τέλος, απομακρύνουμε και τη ράβδο από το σφαιρίδιο. Ο δείκτης αποκλίνει από την αρχική κατακόρυφη θέση του. Αυτό συμβαίνει γιατί ηλεκτρόνια της ράβδου και του δείκτη μεταφέρονται στο σφαιρίδιο, οπότε η ράβδος και ο δείκτης φορτίζονται θετικά. Το σφαιρίδιο παραμένει θετικά φορτισμένο γιατί τα ηλεκτρόνια που μεταφέρθηκαν σ' αυτό, εξουδετέρωσαν μέρος του θετικού του φορτίου (Εικ.5δ).
Ηλέκτριση με επαγωγή. Εικόνα 5.
3. Με επαφή Αρνητικά φορτισμένη ράβδος εβονίτη έρχεται σε επαφή με το σφαιρίδιο αρχικά αφόρτιστου ηλεκτροσκοπίου και στη συνέχεια απομακρύνεται. Παρατηρούμε ότι ο δείκτης αποκλίνει από την αρχική κατακόρυφη θέση του. Αυτό συμβαίνει γιατί ηλεκτρόνια από τη ράβδο του εβονίτη μεταφέρονται στο ηλεκτροσκόπιο φορτίζοντάς το αρνητικά (Εικ. 6). Βλέπουμε λοιπόν, ότι ένα μέρος του φορτίου της ράβδου μεταφέρθηκε στο ηλεκτροσκόπιο κατά τη διάρκεια της επαφής.
Αγωγοί - Μονωτές - Ηλεκτρικό κύκλωμα α) Στην καθημερινή ζωή συμβαίνουν φαινόμενα, που προκαλούνται από κινούμενα ηλεκτρικά φορτία. Στην κίνηση των ηλεκτρικών φορτίων οφείλεται ο ηλεκτρικός φωτισμός, η ηλεκτρική θέρμανση, η κίνηση των ηλεκτρικών κινητήρων, η λειτουργία του ραδιοφώνου, η λειτουργία της τηλεόρασης, η λειτουργία των ηλεκτρονικών υπολογιστών κ.ά. Με το σύνολο των φαινομένων που προκαλούνται από κινούμενα φορτία ασχολείται ο Δυναμικός Ηλεκτρισμός. Τα σώματα που επιτρέπουν τη μετακίνηση φορτίου μέσα από τη μάζα τους λέγονται αγωγοί. Αγωγοί είναι τα μέταλλα , οι ηλεκτρολυτικοί αγωγοί, οι ημιαγωγοί, οι υπεραγωγοί, τα ιονισμένα αέρια, όπως και όλα τα έμβια όντα. |
Ηλέκτριση σώματος με επαφή. Εικόνα 6. Χάλκινο σύρμα. Εικόνα 7. |
Τα σώματα που δεν επιτρέπουν τη μετακίνηση φορτίου μέσα από τη μάζα τους λέγονται μονωτές. Μονωτές είναι το ξύλο, το γυαλί, το πλαστικό, το χαρτί, το καουτσούκ, τα κεραμικά, το λάστιχο κ.ά. Ας δούμε τι γίνεται στους μεταλλικούς αγωγούς, που είναι οι συνηθέστεροι και έχουν μεγαλύτερη σχέση με την καθημερινή ζωή. Ένα τυπικό παράδειγμα μεταλλικού αγωγού είναι το χάλκινο σύρμα (Εικ. 7), το οποίο υπάρχει μέσα στα καλώδια που χρησιμοποιούμε στις οικιακές συσκευές. Στο εσωτερικό ενός ουδέτερου μεταλλικού αγωγού υπάρχει μεγάλος αριθμός (περίπου 1023/cm3) ελευθέρων ηλεκτρονίων και θετικών ιόντων. Τα ελεύθερα ηλεκτρόνια είναι ηλεκτρόνια, που ξέφυγαν από την έλξη του πυρήνα και κινούνται άτακτα προς όλες τις κατευθύνσεις με ταχύτητες της τάξης των km/s (Εικ. 8). Τα ελεύθερα ηλεκτρόνια αποτελούν ένα είδος «ηλεκτρονικού αερίου», γιατί η κίνησή τους μοιάζει με την κίνηση των μορίων ενός αερίου. Τα θετικά ιόντα είναι τα ιόντα, που προέκυψαν από τα άτομα του μετάλλου, επειδή τους ξέφυγαν τα ηλεκτρόνια. Τα θετικά ιόντα ταλαντώνονται γύρω από καθορισμένες θέσεις προς όλες τις κατευθύνσεις, με πλάτος που αυξάνεται με τη θερμοκρασία. Τα θετικά ιόντα συνδέονται μεταξύ τους με ισχυρές δυνάμεις, όμοιες με εκείνες ενός ελατηρίου. Το σύνολο των θετικών ιόντων, που είναι τοποθετημένα σε καθορισμένες θέσεις καλείται πλέγμα (Εικ. 9). Η αγωγιμότητα των μετάλλων οφείλεται στα ελεύθερα ηλεκτρόνια. Στους μονωτές η μεγάλη πλειοψηφία των ηλεκτρονίων είναι δέσμια του πυρήνα τους. Υπάρχει περίπου ένα ελεύθερο ηλεκτρόνιο ανά 5cm3.
Ηλεκτρικό κύκλωμα. (α) Εργαστηριακή διάταξη. (β) Συμβολισμός. Εικόνα 10. β) Ηλεκτρικό κύκλωμα λέμε μία κλειστή αγώγιμη διαδρομή, από την οποία διέρχεται το ηλεκτρικό ρεύμα. Η διάταξη της εικόνας 10, η οποία αποτελείται από μία ηλεκτρική πηγή, ένα διακόπτη Δ, ένα αμπερόμετρο και ένα λαμπτήρα Λ, είναι ένα απλό ηλεκτρικό κύκλωμα. |
Εσωτερικό μεταλλικού αγωγού. Εικόνα 8. Πλέγμα. Εικόνα 9. |
Συμβολισμός ανοικτού διακόπτη. Εικόνα 11. Ανοικτό κύκλωμα. Εικόνα 12. Όταν ο διακόπτης Δ είναι ανοικτός (Εικ. 11), το κύκλωμα λέγεται ανοικτό κύκλωμα και δε διαρρέεται από ρεύμα (Εικ. 12). Συμβολισμός κλειστού διακόπτη. Εικόνα 13. Κλειστό κύκλωμα. Εικόνα 14. Όταν ο διακόπτης Δ είναι κλειστός (Εικ. 13), το κύκλωμα λέγεται κλειστό κύκλωμα και διαρρέεται από ρεύμα (Εικ. 14). |
Συμβολισμοί σε ηλεκτρικό κύκλωμα Για να παραστήσουμε ένα ηλεκτρικό κύκλωμα στο χαρτί μας, χρησιμοποιούμε σύμβολα για τα στοιχεία που το αποτελούν. Αυτό κάναμε και στο κύκλωμα της εικόνας 10. Στον παρακάτω πίνακα υπάρχουν τα σύμβολα των κυριοτέρων στοιχείων ενός ηλεκτρικού κυκλώματος. |
Μαγνήτες Οι Έλληνες και οι Κινέζοι ήξεραν από την αρχαιότητα (περίπου από τον 6o π.Χ. αιώνα) ένα ορυκτό που είχε την ιδιότητα να έλκει διάφορα σιδερένια αντικείμενα όπως καρφιά, βελόνες και ρινίσματα σιδήρου. Το ορυκτό αυτό που είχε βρεθεί στην Μαγνησία της Μικρός Ασίας ονομάστηκε μαγνητίτης. Η ιδιότητά του να έλκει τα σιδερένια αντικείμενα ονομάστηκε μαγνητισμός. Σήμερα γνωρίζουμε ότι το ορυκτό αυτό είναι το επιτεταρτοξείδιο του σιδήρου F304. Έρευνες έχουν δείξει ότι ο μαγνήτης ασκεί δυνάμεις σε σώματα από σίδηρο, νικέλιο, κοβάλτιο ή κράματα των παραπάνω μετάλλων. Ο Μαγνητίτης είναι φυσικός μαγνήτης. Συνήθως όμως χρησιμοποιούμε τεχνητούς μαγνήτες που έχουν κατάλληλο σχήμα ανάλογα με τη χρήση για την οποία προορίζονται π.χ. ράβδου (ραβδοειδής), πετάλου (πεταλοειδής), δίσκου, δακτυλίου ή βελόνας. Αν φέρουμε κοντά σε ένα μαγνήτη αντικείμενα από μαγνητίσιμο υλικό τότε μετατρέπονται και αυτά σε μαγνήτες. Αυτό μπορεί να συμβεί ακόμα και αν ανάμεσά τους παρεμβάλλεται ένα μη μαγνητίσιμο υλικό όπως π.χ. ξύλο. Ορισμένα υλικά, όπως π.χ. ο χάλυβας, όταν μαγνητιστούν γίνονται μόνιμοι μαγνήτες διατηρούν δηλαδή το μαγνητισμό τους για πολύ χρόνο, ενώ άλλα υλικά όπως π.χ. ο μαλακός σίδηρος διατηρούν το μαγνητισμό τους προσωρινά.
Συνηθισμένες μορφές μαγνητών. |
|
Κάθε άνθρωπος έχει παρατηρήσει κατά τη διάρκεια μιας καταιγίδας, το φαινόμενο της δημιουργίας ενός κεραυνού που διαρκεί μερικά εκατομμυριοστά του δευτερολέπτου. Όταν περπατάμε σ' ένα χαλί μπορεί να αισθανθούμε ένα ελαφρύ τίναγμα που προκαλεί ένας ηλεκτρικός σπινθήρας. Τα δύο αυτά φαινόμενα παρά τη διαφορά ως προς την κλίμακα που εκδηλώνονται, προκαλούνται από την ίδια αιτία. Η αιτία αυτή είναι οι δυνάμεις που αναπτύσσονται μεταξύ των ηλεκτρικών φορτίων. Σήμερα η ηλεκτρομαγνητική δύναμη αποτελεί μία από τις θεμελιώδεις δυνάμεις, η οποία μαζί με τις βαρυτικές (που έχετε διδαχθεί) και τις ασθενείς και ισχυρές πυρηνικές (που θα διδαχθούν στην επόμενη τάξη) αποτελούν τις τέσσερις θεμελιώδεις δυνάμεις στη φύση. Σ' αυτήν την ενότητα θα μάθουμε για τις δυνάμεις που ασκούνται μεταξύ ακίνητων ηλεκτρικών φορτίων και πώς αυτές υπολογίζονται μέσω του νόμου του Coulomb. Θα μάθουμε τι είναι το ηλεκτρικό πεδίο, πώς περιγράφονται οι ηλεκτροστατικές δυνάμεις με τη βοήθειά του, καθώς επίσης και τα χαρακτηριστικά του. Τέλος, θα μελετήσουμε τις αποθήκες ηλεκτρικού φορτίου και ενέργειας που ονομάζονται πυκνωτές, τη μορφή του πεδίου στο εσωτερικό τους και τη χρησιμότητά τους.
|