Δραστηριότητα 2
Κατακόρυφη και οριζόντια κίνηση.
1.
Τοποθέτησε ένα πλαστικό χάρακα και δύο πανομοιότυπα νομίσματα όπως φαίνεται στην εικόνα.
2.
Πίεσε το χάρακα στο μέσο του με το δείκτη του ενός χεριού και χτύπησε απότομα την άκρη του χάρακα με το δείκτη του άλλου. Με τον τρόπο αυτό, το νόμισμα Α ελευθερώνεται και πέφτει κατακόρυφα, ενώ το Β εκτινάσσεται οριζόντια με κάποια αρχική ταχύτητα.
3.
Ακουσε τα νομίσματα καθώς χτυπούν στο δάπεδο.
i) Αν δεν υπήρχε η δύναμη της βαρύτητας τι κίνηση θα έκανε το νόμισμα Β μετά το χτύπημα από τον χάρακα; Αν δεν υπήρχε η αρχική οριζόντια ταχύτητα από το χτύπημα του χάρακα, τι κίνηση θα έκανε το νόμισμα Β, όταν θα αφηνόταν ελεύθερο από το ίδιο ύψος; Δικαιολόγησε τις απαντήσεις σου. ii) Η κίνηση του νομίσματος Β είναι απλή ή συνδυασμός άλλων απλών κινήσεων; Αν συμβαίνει το δεύτερο, τότε ποιες είναι αυτές; iii) Τα δύο νομίσματα αρχίζουν τις κινήσεις τους συγχρόνως. Μήπως επίσης φθάνουν συγχρόνως στο δάπεδο; Αν ναι, τότε τι συμπεραίνεις για τις (κατακόρυφες) επιταχύνσεις τους;
4.
Η οριζόντια κίνηση του νομίσματος Β επηρεάζει την άλλη επιμέρους κίνησή του (την πτώση του κατά την κατακόρυφη διεύθυνση); Είναι ανεξάρτητη η μία κίνηση από την άλλη; Μπορούμε επομένως, όταν ασχολούμαστε με μία σύνθετη κίνηση σώματος, να μελετούμε ξεχωριστά τις επιμέρους απλές κινήσεις που τη συνθέτουν;
Συνοψίζοντας, μπορούμε να υποστηρίξουμε ότι η οριζόντια βολή είναι σύνθετη κίνηση που αποτελείται από δύο απλές κινήσεις, μία κατακόρυφη που είναι ελεύθερη πτώση και μία οριζόντια που είναι ευθύγραμμη ομαλή.
Οι δύο κινήσεις εξελίσσονται στο ίδιο κατακόρυφο επίπεδο που ορίζεται από την ταχύτητα του αντικειμένου Β.
Για να περιγράψουμε τις σύνθετες κινήσεις χρησιμοποιούμε την αρχή ανεξαρτησίας (ή αρχή της επαλληλίας) των κινήσεων, που διατυπώνεται ως εξής:
“Όταν ένα κινητό εκτελεί ταυτόχρονα δύο ή περισσότερες κινήσεις, κάθε μία απ' αυτές εκτελείται εντελώς ανεξάρτητα από τις υπόλοιπες και η θέση στην οποία φτάνει το κινητό μετά από χρόνο t, είναι η ίδια είτε οι κινήσεις εκτελούνται ταυτόχρονα, είτε εκτελούνται διαδοχικά, σε χρόνο t κάθε μία”.
|