| Οι προηγούμενες δραστηριότητες μας βοηθούν να διαπιστώσουμε ότι πολλές φορές χρειάζεται να συγκρίνουμε φυσικούς ή δεκαδικούς
        αριθμούς μεταξύ τους.  
| Σύγκριση και διάταξη αριθμών Δύο αριθμοί (φυσικοί ή δεκαδικοί) μπορούν πάντα να συγκριθούν μεταξύ τους. Το αποτέλεσμα της σύγκρισης εκφράζεται με τα σύμβολα <, >, =. | Παραδείγματα 801 < 811 1,13 < 1,15 |  
| Μπορούμε να διατάξουμε τους αριθμούς, σύμφωνα με το αποτέλεσμα της σύγκρισής τους, από το μικρότερο προς το μεγαλύτερο (αύξουσα σειρά) ή από το μεγαλύτερο προς το μικρότερο (φθίνουσα σειρά).  | 2,05 < 3,1 < 3,5 23 > 15 >9 
 |  
| Η σύγκριση και η διάταξη των αριθμών μας επιτρέπει να παρεμβάλουμε έναν ή περισσότερους αριθμούς ανάμεσα σε δύο άλλους. | 1 < ... < 3 
 |  
          
          Εφαρμογή 1η 
| Ένα έτοιμο τοστ στοιχίζει 1,10 €. Για να το φτιάξουμε μόνοι μας, πρέπει να χρησιμοποιήσουμε τα εξής υλικά: ψωμί που κοστίζει 0,20 €, σαλάμι που κοστίζει 0,23 € και κασέρι που κοστίζει 0,18 €. Σε ποια περίπτωση μας στοιχίζει το τοστ περισσότερο;
 Λύση Για να μπορέσουμε να συγκρίνουμε τα ποσά που πληρώνουμε στις δύο περιπτώσεις, πρέπει να βρούμε πόσο πληρώνουμε για όλα τα υλικά όταν το φτιάχνουμε μόνοι μας.Έτσι έχουμε: 0,20 + 0,23 + 0,18 = .....................
 Επομένως, πληρώνουμε περισσότερο όταν το αγοράζουμε έτοιμο, αφού 1,10 > ..........
 | 
   
          Εφαρμογή 2η Αν τα σημεία Α και Β πάνω στην αριθμογραμμή αντιστοιχούν στους αριθμούς 2 και 6, σε ποιον αριθμό αντιστοιχεί το μέσο του τμήματος ΑΒ;
  
| Λύση Η απόσταση μεταξύ των σημείων Α και Β είναι 4 μονάδες. Το μέσο τους απέχει 2 μονάδες από το καθένα. Το ζητούμενο σημείο απέχει από το Α δύο (2) μονάδες, προσθέτουμε και τις 2 μονάδες που απέχει το σημείο Α από το μηδέν και βρίσκουμε: 2 + 2 = 4.Άρα το μέσο του τμήματος ΑΒ αντιστοιχεί στον αριθμό ........... της αριθμογραμμής.
 | 
 |