Αριθμοί και πράξεις
|
Aριθμοί και πράξεις Σε αυτή τη θεματική ενότητα θα ασχοληθούμε με τους αριθμούς και τις πράξεις με αριθμούς. Θα ξεκινήσουμε από τα αριθμητικά σύμβολα τα οποία χρησιμοποιούμε από την Α΄Δημοτικού για να φτιάξουμε τους αριθμούς και να κάνουμε υπολογισμούς. Ξέρετε πως οι Ινδοί τα χρησιμοποιούσαν από το 350 π.X.; Γνωρίζετε ακόμα ότι τα δίδαξαν αργότερα οι Άραβες στους Ευρωπαίους και για το λόγο αυτό ονομάστηκαν «αραβικοί αριθμοί»; Τα σύμβολα που γνωρίζουμε δεν τελειοποιήθηκαν σε κάποιον ορισμένο χρόνο ή τόπο αλλά εξελίχτηκαν με συνεχή ανάπτυξη και πιθανότατα τελειοποιήθηκαν τους τελευταίους αιώνες. Στο σκίτσο που ακολουθεί βλέπετε την εξέλιξη των συμβόλων από το 800 μετά Χριστόν έως σήμερα. |
Οι μαθητές της Στ΄ τάξης του 64ου Δημοτικού Σχολείου Θεσσαλονίκης, στο πλαίσιο του ευρωπαϊκού προγράμματος SOCRATES/COMENIUS, αναζήτησαν στοιχεία για τους ανήλικους εργαζόμενους στην Ελλάδα.
Στο διπλανό πίνακα περιλαμβάνονται τα στοιχεία που συγκέντρωσαν.
Να τοποθετήσετε στην ιστορική γραμμή τα ακόλουθα ιστορικά γεγονότα. Α. Οι πρώτοι σύγχρονοι Ολυμπιακοί Αγώνες 1896 Β. Δεκαέξι χρόνια μετά τους Ολυμπιακούς Αγώνες γίνεται ο Α΄ Βαλκανικός πόλεμος. Γ. Δύο χρόνια μετά αρχίζει ο Α΄ Παγκόσμιος πόλεμος, που διαρκεί 4 χρόνια (Σημειώστε την αρχή και το τέλος του.) Δ. Η λήξη του πολέμου βρίσκει τον Οδυσσέα Ελύτη στην Αθήνα σε ηλικία 7 ετών. (Σημειώστε τη χρονολογία της γέννησής του.) |
Πολλές φορές στη ζωή μας χρησιμοποιούμε αριθμούς για να εκφράσουμε ένα πλήθος ή μια σειρά. Λέμε, για παράδειγμα, ότι από τους 23 μαθητές της τάξης στη γραμμή ο Γιάννης είναι 1ος. Οι αριθμοί 23 και 1 ονομάζονται «φυσικοί αριθμοί».
Εφαρμογή 1η Να γραφεί με ψηφία ο αριθμός επτά εκατομμύρια δεκαπέντε χιλιάδες εννιακόσια δύο. Λύση Κάθε ψηφίο διαβάζεται ανάλογα με τη θέση του στον αριθμό. Το ψηφίο μηδέν (0) δεν διαβάζεται, αλλά γράφεται για να κρατά τα άλλα ψηφία στη σωστή τους θέση και δηλώνει ότι λείπουν οι μονάδες της θέσης που κατέχει. Στους αριθμούς που έχουν περισσότερα από τρία ψηφία, για λόγους ευκολίας στην ανάγνωση, χωρίζουμε με μία τελεία κάθε τριάδα ψηφίων, αρχίζοντας από τις μονάδες (δεξιά). Έτσι, θα γράψουμε τον αριθμό 7015902 χρησιμοποιώντας τις τελείες διαχωρισμού: ..................... Εφαρμογή 2η Τι φανερώνει το ψηφίο 2 στους παρακάτω αριθμούς;
Λύση α. μονάδες, β. δεκάδες, γ. μονάδες χιλιάδων, δ. εκατοντάδες, ε. μονάδες εκατομμυρίων Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Μικροπείραμα Eρωτήσεις για αυτοέλεγχο και συζήτηση Στο κεφάλαιο αυτό συναντήσαμε τον όρο φυσικός αριθμός. Μπορείς να τον εξηγήσεις με δικά σου παραδείγματα;
|