Σε μερικές περιπτώσεις δεν μας είναι απαραίτητο να εκφραζόμαστε με απόλυτη ακρίβεια.
Στο διπλανό πίνακα φαίνονται οι τρεις πολυπληθέστερες χώρες του κόσμου και ο συνολικός πληθυσμός της γης το έτος 2003.
Στο γραφείο «Αγωγής Yγείας» τα παιδιά παρατήρησαν το παρακάτω σχήμα, στο οποίο φαίνονται σημειωμένες οι θερμίδες που καίει κάποιος όταν κάνει ορισμένες δραστηριότητες για 1 ώρα ( π.χ. κολύμπι, τρέξιμο, ποδηλασία, χορός, μπάσκετ, ποδόσφαιρο).
|
Από τις προηγούμενες δραστηριότητες μπορούμε να συμπεράνουμε ότι:
Δεν στρογγυλοποιούμε τους αριθμούς που χρησιμοποιούνται ως κώδικας επικοινωνίας (π.χ. ο αριθμός της ταυτότητας ή της πινακίδας του αυτοκινήτου, ο Τ.Κ. του σπιτιού κ.λπ.). Εφαρμογή 1η Μια συνηθισμένη κυψέλη έχει 12.475 μέλισσες. Πόσες μέλισσες έχει περίπου ένας μελισσοκόμος με 6 κυψέλες; Λύση Για να κάνουμε έναν γρήγορο, κατά προσέγγιση, υπολογισμό θα στρογγυλοποιήσουμε τον αριθμό 12.475 στην πλησιέστερη εκατοντάδα, θα γίνει δηλαδή 12.500. Απάντηση: Έχει περίπου 75.000 μέλισσες. Εφαρμογή 2η Ένα κουτί με CD εγγραφής κοστίζει 1,29 €. Πόσα χρήματα θα πληρώσουμε κατά προσέγγιση για 5 κουτιά; Λύση Για ένα γρήγορο, κατά προσέγγιση, υπολογισμό θα στρογγυλοποιήσουμε το 1,29 στο πλησιέστερο δέκατο, θα γίνει δηλαδή 1,30. Απάντηση: Θα πληρώσουμε περίπου 6,5 €. Eρωτήσεις για αυτοέλεγχο και συζήτηση Στο κεφάλαιο αυτό μελετήσαμε τη στρογγυλοποίηση των αριθμών. Εξήγησε με ένα παράδειγμα τη διαδικασία της στρογγυλοποίησης.
|